Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Environ Manage ; 351: 119888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176379

RESUMO

Amid rising energy crises and greenhouse gas (GHG) emissions, designing energy efficient, GHG mitigation and profitable conservation farming strategies are pertinent for global food security. Therefore, we tested a hypothesis that no-till with residue retaining could improve energy productivity (EP) and energy use efficiency (EUE) while mitigating the carbon footprint (CF), water footprint (WF) and GHG emissions in rice-wheat double cropping system. We studied two tillage viz., conventional and conservation, with/without residue retaining, resulting as CT0 (puddled-transplanted rice, conventional wheat -residue), CTR (puddled-transplanted rice, conventional wheat + residue), NT0 (direct seeded rice, zero-till wheat -residue), and NTR (direct seeded rice, zero-till wheat + residue). The overall results showed that the NTR/NT0 had 34% less energy consumption and 1.2-time higher EP as compared to CTR/CT0. In addition, NTR increased 19.8% EUE than that of CT0. The grain yield ranged from 8.7 to 9.3 and 7.8-8.5 Mg ha-1 under CT and NT system, respectively. In NTR, CF and WF were 56.6% and 17.9% lower than that of CT0, respectively. The net GHG emissions were the highest (7261.4 kg CO2 ha-1 yr-1) under CT0 and lowest (4580.9 kg CO2 ha-1 yr-1) under NTR. Notably, the carbon sequestration under NTR could mitigate half of the system's CO2-eq emissions. The study results suggest that NTR could be a viable option to offset carbon emissions and water footprint by promoting soil organic carbon sequestration, and enhancing energy productivity and energy use efficiency in the South Asian Indo-Gangetic Plains.


Assuntos
Gases de Efeito Estufa , Oryza , Solo/química , Triticum , Carbono/análise , Dióxido de Carbono , Agricultura/métodos , Água
3.
Plant Signal Behav ; 18(1): 2186045, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37016728

RESUMO

Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.


Assuntos
Pisum sativum , Tiamina , Feminino , Humanos , Catalase/metabolismo , Tiamina/farmacologia , Tiamina/metabolismo , Pisum sativum/fisiologia , Secas , Antioxidantes/metabolismo , Peroxidase/metabolismo
4.
J Sci Food Agric ; 103(6): 2745-2751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36273267

RESUMO

Wheat grain quality, an important determinant for human nutrition, is often overlooked when improving crop production for stressed environments. Climate change makes this task more difficult by imposing combined stresses. The scenarios relevant to climate change include elevated CO2 concentrations (eCO2 ) and extreme climatic events such as drought, heat waves, and salinity stresses. However, data on wheat quality in terms of climate change are limited, with no concerted efforts at the global level to provide an equitable and consistent climate risk assessment for wheat grain quality. Climate change induces changes in the quality and composition of wheat grain, a premier staple food crop globally. Climate-change events, such as eCO2 , heat, drought, salinity stress stresses, heat + drought, eCO2 + drought, and eCO2 + heat stresses, alter wheat grain quality in terms of grain weight, nutrient, anti-nutrient, fiber, and protein content and composition, starch granules, and free amino acid composition. Interestingly, in comparison with other stresses, heat stress and drought stress increase phytate content, which restricts the bioavailability of essential mineral elements. All climatic events, except for eCO2 + heat stress, increase grain gliadin content in different wheat varieties. However, grain quality components depend more on inter-varietal difference, stress type, and exposure time and intensity. The climatic events show differential regulation of protein and starch accumulation, and mineral metabolism in wheat grains. Rapid climate shifting impairs wheat productivity and causes grain quality to deteriorate by interrupting the allocation of essential nutrients and photoassimilates. © 2022 Society of Chemical Industry.


Assuntos
Mudança Climática , Triticum , Humanos , Triticum/química , Grão Comestível/química , Resposta ao Choque Térmico , Amido/análise
5.
Sci Rep ; 12(1): 19681, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385257

RESUMO

In the current study, a vertical, 3D-heated plate is used to replicate the generation of heat energy and concentration into Prandtl liquid. We discuss how Dufour and Soret theories relate to the equations for concentration and energy. In order to see how effectively particles, interact with heat and a solvent, hybrid nanoparticles are used. It does away with the phenomena of viscous dissipation and changing magnetic fields. The motivation behind the developed study is to optimize solvent and heat storage uses in the biological and industrial domains. This article's major goal is to explore the aspects of thermal energy and mass transfer that influence how nanoparticles, hybrid nanoparticles, and 3D melting surface sheets behave. Variable thermal efficiency and variable mass transfer are combined. The system of generated PDEs (difference equations) includes the concentration, velocity, and heat energy equations. The numerical calculations are done for Silver (Ag), Molybdenum Disulfide (MoS2) nanoparticles with Ethylene glycol (C2H6O2) as the base fluid using a boundary layer approach to the mathematical formulation. The system of ODEs is formulated through transformations in order to find a solution. A Galerkin finite element algorithm (G-FEA) is adopted to analyze various aspects versus different parameters. It has been found that motion into hybrid nanoparticles is reduced by motion into nanoparticles. Additionally, differences in heat energy and solvent particle sizes are associated with modifications in magnetic, Dufour, Eckert, and Soret numbers. In contrast to hybrid nanostructures, the output of thermal energy is usually observed to be substantially higher. The magnetic field parameter decreases the particle velocity. In contradiction to the Eckert number, bouncy parameter, and magnetic parameter set values, the maximum quantity of heat energy is obtained. variable thermal conductivity's function. The 3D heated vertical surface convective heat transfer of nanofluids and hybrid nanofluids under the impact of a heat source, thermal radiation, and viscous dissipation has not yet been studied, as far as the authors are aware.

6.
Life (Basel) ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36294965

RESUMO

Milk thistle (Silybum marianum (L.)) is a wild medicinal herbal plant that is widely used in folk medicine due to its high content of secondary metabolites (SMs) and silymarin; however, the data regarding the response of milk thistle to salinity are still scarce and scanty. The present study evaluated the effect of salinity on a geographically diverse population of milk thistle and on the role of medium supplementation (MS) with ascorbic acid, thiourea, and moringa leaf extract in improving the SMs and growth-related attributes under salinity stress (SS). For germination, a 120 mM level of salinity was applied in the soil during the seedling stage. After salinity development, predetermined levels of the following compounds were used for MS: thiourea (250 µM), moringa leaf extract (3%), and ascorbic acid (500 µM). The data regarding growth attributes showed that SS impaired plant growth and development and increased SM production, including alkaloids, anthocyanin, and saponins. Moreover, ascorbic acid, followed by moringa leaf extract, was the most effective in improving growth by virtue of increased SMs, especially under salt stress conditions. The present study demonstrated that milk thistle could withstand moderate doses of SS, while MS improved all the growth parameters by increasing the accumulation of SMs.

7.
Sci Rep ; 12(1): 11658, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804039

RESUMO

The present study probed the creation of heat energy and concentrating into Newtonian liquids across vertical 3D-heated plates. The role of the Soret and Dufour theories in concentrating and energy formulas is discussed. The role of hybrid nanoparticles is introduced to illustrate particle efficiency in terms of solute and thermal energy. It is removed a viscous dissipation process and a changing magnetic field. The proposed approach is motivated by the need to maximize solute and thermal energy uses in biological and industrial domains. The constructed system of (partial differential equations) PDEs includes concentration, momentum, and thermal energy equations within various thermal characteristics. Transformations are used to formulate the system of (ordinary differential equations) ODEs for solution. To assess various features vs various variables, a Galerkin finite element approach is used. Motion into nanoscale components is shown to be smaller than motion into hybrid nanoparticles. Furthermore, fluctuations in heat energy and solute particle counts are seen in relation to changes in Soret, Eckert, magnetic, and Dufour numbers. The basic finding is that the generation of thermal energy for hybridized nanomaterials is much higher.

8.
Sci Rep ; 12(1): 12219, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851297

RESUMO

Fluid-structure interaction (FSI) gained a huge attention of scientists and researchers due to its applications in biomedical and mechanical engineering. One of the most important applications of FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using non-Newtonian models. In this study we explored non-Newtonian, incompressible Casson fluid flow in a bifurcated artery with a stenosis. The two-dimensional Casson model is used to study the hemodynamics of the flow. The walls of the artery are supposed to be elastic and the stenosis region is constructed in both walls. Suitable scales are used to transform the nonlinear differential equations into a dimensionless form. The problem is formulated and discretized using Arbitrary Lagrangian-Eulerian (ALE) approach. The finite element method (FEM) technique is used to solve the system of equations, together with appropriate boundary conditions. The analysis is carried out for the Bingham number, Hartmann number, and Reynolds number. The graphical results of pressure field, velocity profile, and load on the walls are assessed and used to study the influence of hemodynamic effects on stenotic arteries, bifurcation region, and elastic walls. This study shows that there is an increase in wall shear stresses (WSS) with increasing values of Bingham number and Hartmann number. Also, for different values of the Bingham number, the load on the upper wall is computed against the Hartmann number. The result indicate that load at the walls increases as the values of Bingham number and Hartmann number increase.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Artérias , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Constrição Patológica , Humanos , Estresse Mecânico
9.
PLoS One ; 17(4): e0265654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421099

RESUMO

The appraisal of foliar treatment of iron (Fe) and salicylic acid (SA) on plant under artificial magnetism is very crucial in understanding its impact on growth and development of plants. The present study was designed to document the potential role of Fe and SA on pea (Pisum sativum L.) Matore variety exposed to different magnetism treatments (geomagnetism and artificial magnetism). Thus a pot experiment was conducted using Completely Randomized Design under factorial with three replicates. Various artificial magnetic treatment were applied in pots prior to sowing. Further, 15 days germinated pea seedlings were foliarly supplemented with 250 ppm Fe and 250µM SA, moreover after 20 days of foliar fertilization plants were harvested to analyze and record various morpho-physiological attributes. Data elucidate significant variations in pea plants among different treatments. Artificial magnetism treatments in combination with foliar application of Fe and SA significantly improved various growth attributes (root and shoot length, fresh and dry weights of root and shoot, leaf area), photosynthetic pigments (Chl a, b and carotenoids) and the contents of soluble sugars. However, oxidative stress (H2O2 and MDA) enhanced under different magnetism treatment but foliar application of Fe and SA hampered the production of reactive oxygen species thereby limiting the concentration of H2O2 and MDA in plant tissues. Furthermore the accumulation of nutrients (iron, potassium and nitrate) profoundly increased under artificial magnetism treatment specifically under Fe and SA foliar treatment excluding nitrate where Fe foliar treatment tend to limit nitrate in plant. Consequently, the present research interestingly highlights progressive role of Fe and SA foliar treatment on pea plants under artificial magnetism. Thus, foliar supplementation may be suggested for better growth and development of plants combined with magnetic treatments.


Assuntos
Pisum sativum , Ácido Salicílico , Peróxido de Hidrogênio , Ferro/farmacologia , Nitratos , Ácido Salicílico/farmacologia
10.
Plants (Basel) ; 11(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336620

RESUMO

Quinoa's germplasm evaluation is the first step towards determining its suitability under new environmental conditions. The aim of this study was to introduce suitable germplasm to the lowland areas of the Faisalabad Plain that could then be used to introduce quinoa more effectively to that region. A set of 117 quinoa genotypes belonging to the USDA quinoa collection was evaluated for 11 phenotypic quantitative traits (grain yield (Y), its biological and numerical components plus phenological variables) in a RCBD during two consecutive growing seasons at the University of Agriculture, Faisalabad, Pakistan under mid-autumn sowings. Genotypic performance changed across the years, however most phenotypic traits showed high heritability, from 0.75 for Harvest Index (HI) to 0.97 for aerial biomass (B) and Y. Ordination and cluster analyses differentiated four groups dominated by genotypes from: Peru and the Bolivian Highlands (G1); the Bolivian Highlands (G2); the Ballón collection (regarded as a cross between Bolivian and Sea Level (Chilean) genotypes) plus Bolivian Highlands (G3); and Ballón plus Sea Level (G4), this latter group being the most differentiated one. This genetic structure shared similarities with previous groups identified using SSR markers and G×E data from an international quinoa test. G4 genotypes showed the highest Y associated with higher B and seed numbers (SN), while HI made a significant contribution to yield determination in G2 and seed weight (SW) in G3. G1 and G2 showed the lowest Y associated with a lower B and SN. Moreover, SW showed a strongly negative association with SN in G2. Accordingly, G4 followed by G3 are better suited to the lowland areas of Faisalabad plain and the physiological traits underlying yield determination among genotypic groups should be considered in future breeding programs.

11.
Plant Physiol Biochem ; 178: 55-69, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276596

RESUMO

Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. However, the capacity of plants to become photosynthetically active under adverse saline conditions remains largely untapped. This study addresses this discrepancy by exploring the current knowledge on the impact of salinity on chloroplast operation, metabolism, chloroplast ultrastructure, and leaf anatomy, and highlights the dire consequences for photosynthetic machinery and stomatal conductance. We also discuss enhancing photosynthetic capacity by modifying and redistributing electron transport between photosystems and improving photosystem stability using genetic approaches, beneficial microbial inoculations, and root architecture changes to improve salt stress tolerance under field conditions. Understanding chloroplast operations and molecular engineering of photosynthetic genes under salinity stress will pave the way for developing salt-tolerant germplasm to ensure future sustainability by rehabilitating saline areas.


Assuntos
Fotossíntese , Estresse Salino , Cloroplastos/ultraestrutura , Salinidade , Tolerância ao Sal/fisiologia
12.
Environ Sci Pollut Res Int ; 29(35): 52534-52543, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35262890

RESUMO

Delay sowing of wheat is a common problem in Punjab that exacerbates serious yield loss. To reduce yield loss and improve yield, different combinations of foliar-applied bioregulator and micronutrients, control (CK), zinc (Zn), boron (B), thiourea (TU), Zn + B (ZnB), Zn + TU (ZnTU), B + TU (BTU), Zn + B + TU (ZnBTU) were applied at booting and grain filling stages in delayed sown wheat in 2017-18 and 2018-19. The results showed that ZnBTU treatment significantly increased leaf area index by 25.06% and 23.21%, spike length by 15.11% and 19.65% in 2017 and 2018, respectively, compared to CK. The ZnBTU treatment also increased 1000-grain weight by 21.96% and 22.01% in 2017 and 2018, respectively, compared to CK. Similarly, higher Zn, B and N contents in straw and grain were recoded for ZnBTU treatment which was statistically similar to ZnB and ZnTU treatments. Overall, ZnBTU treatment also increased the photosynthetic rate, transpiration rate, stomatal conductance by 46.67%, 26.03%, 76.25% and decreased internal CO2 by 28.18%, compared to CK, respectively. Moreover, ZnBTU also recorded the highest grain yield in 2017-18 (25.05%) and 2018-19 (28.49%) than CK. In conclusion, foliar application of ZnBTU at the booting and grain filling stages of delayed sown wheat could be a promising strategy to increase grain yield.


Assuntos
Biofortificação , Triticum , Grão Comestível , Micronutrientes , Triticum/fisiologia , Zinco
13.
PLoS One ; 17(1): e0262309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025916

RESUMO

The amount of soil contaminated with heavy metal increases due to urbanization, industrialization, and anthropogenic activities. Quinoa is considered a useful candidate in the remediation of such soil. In this pot experiment, the phytoextraction capacity of quinoa lines (A1, A2, A7, and A9) against different nickel (Ni) concentrations (0, 50, and 100 mg kg-1) were investigated. Required Ni concentrations were developed in polythene bags filled with sandy loam soil using nickel nitrate salt prior to two months of sowing and kept sealed up to sowing. Results showed that translocation of Ni increased from roots to shoots with an increase in soil Ni concentration in all lines. A2 line accumulated high Ni in leaf compared to the root as depicted by translocation factor 3.09 and 3.21 when grown at soil having 50 and 100 Ni mg kg-1, respectively. While, in the case of root, A7 accumulated high Ni followed by A9, A1, and A2, respectively. There was a 5-7% increased seed yield by 50 mg kg-1 Ni in all except A1 compared to control. However, growth and yield declined with a further increase in Ni level. The maximum reduction in yield was noticed in A9, which was strongly linked with poor physiological performance, e.g., chlorophyll a, b, and phenolic contents. Ni concentrations in the seed of all lines were within the permissible value set (67 ppm) by FAO/WHO. The result of the present study suggests that quinoa is a better accumulator of Ni. This species can provide the scope of decontamination of heavy metal polluted soil. The screened line can be used for future quinoa breeding programs for bioremediation and phytoextraction purpose.


Assuntos
Chenopodium quinoa/metabolismo , Recuperação e Remediação Ambiental/métodos , Níquel/metabolismo , Biodegradação Ambiental , Cádmio/análise , Metais Pesados/análise , Níquel/análise , Solo , Poluentes do Solo/análise
14.
Sci Rep ; 11(1): 23835, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903853

RESUMO

Fluid structure interaction (FSI) gained attention of researchers and scientist due to its applications in science fields like biomedical engineering, mechanical engineering etc. One of the major application in FSI is to study elastic wall behavior of stenotic arteries. In this paper we discussed an incompressible Non-Newtonian blood flow analysis in an elastic bifurcated artery. A magnetic field is applied along [Formula: see text] direction. For coupling of the problem an Arbitrary Lagrangian-Eulerian formulation is used by two-way fluid structure interaction. To discretize the problem, we employed [Formula: see text] finite element technique to approximate the velocity, displacement and pressure and then linearized system of equations is solved using Newton iteration method. Analysis is carried out for power law index, Reynolds number and Hartmann number. Hemodynamic effects on elastic walls, stenotic artery and bifurcated region are evaluated by using velocity profile, pressure and loads on the walls. Study shows there is significant increase in wall shear stresses with an increase in Power law index and Hartmann number. While as expected increase in Reynolds number decreases the wall shear stresses. Also load on the upper wall is calculated against Hartmann number for different values of power law index. Results show load increases as the Hartmann number and power law index increases. From hemodynamic point of view, the load on the walls is minimum for shear thinning case but when power law index increased i.e. for shear thickening case load on the walls increased.


Assuntos
Artérias/fisiologia , Circulação Sanguínea , Constrição Patológica/fisiopatologia , Campos Magnéticos , Modelos Cardiovasculares , Animais , Elasticidade , Análise de Elementos Finitos , Hemodinâmica , Humanos , Hidrodinâmica
15.
Front Nutr ; 8: 779595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966772

RESUMO

Field-based experiments were conducted during wheat cultivation seasons of 2017-2018 and 2018-2019 to minimize the impact of hidden hunger (micronutrient deficiencies) through agronomic biofortification of two wheat cultivars with zinc and iron. Two spring-planted bread wheat cultivars: Zincol-16 (Zn-efficient) and Anaj-17 (Zn-inefficient with high-yield potential) were treated with either zinc (10 kg/ha), iron (12 kg/ha), or their combination to study their effect on some growth attributes (plant height, tillers, and spike length, etc.,), productivity, and quality. No application of zinc and iron or their combinations served as the control. Maximum Zn and Fe contents of grains were improved by sole application of Zn and Fe, respectively. A higher concentration of Ca in grains was observed by the combined application of Zn and Fe. Starch contents were found maximum by sole application of Fe. Sole or combined application of Zn and Fe reduced wet gluten contents. Maximum proteins were recorded in Anaj-17 under control treatments. Zincol-16 produced maximum ionic concentration, starch contents, and wet gluten as compared to Anaj-17. Yield and growth attributes were also significantly (p < 0.05) improved by combined application as compared to the sole application of Zn or Fe. The combined application also produced the highest biological and grain yield with a maximum harvest index. Cultivar Anaj-17 was found more responsive regarding growth and yield attributes comparatively. The findings of the present study showed that the combined application of Zn and Fe produced good quality grains (more Zn, Fe, Ca, starch, and less gluten concentrations) with a maximum productivity of bread wheat cultivars.

16.
Sci Rep ; 11(1): 23200, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853350

RESUMO

Silybum marianum (L.) Gaertn (Astraceae) is a well-reputed medicinal plant mostly utilized for silymarin (Sily) content and oil production, however, the information about Sily contents in achene part is still fragmented under different climatic conditions. In this study four milk thistle ecotypes from Faisalabad (FSD), Gujranwala (GUJ), Quetta (QTA), and Kallar kahar (KK) having an altered achene color were analyzed under salt stress. Application of plant growth promoters (PGPs) is one of the solution for ameliorating the effect of salinity and increasing the quantity and quality traits of milk thistle, so ascorbic acid (AsA), thiourea (TU), and moringa leaf extract (MLE) were soil supplied after developing salinity stress (120 mM with irrigation) at germination stage. Predetermined levels were selected for PGPs such as AsA (500 µM), MLE (3%), and TU (250 µM). Results revealed that all yield related attributes were significantly decreased, while secondary metabolites, pericarp epidermis, pericarp parenchyma, and pericarp seed integument increased under salinity stress. Data suggested that PGPs treatment was helpful to alleviate the deleterious effects of salinity stress and enhance the milk thistle quality and quantity parameters. The ecotypic variations with altered achene color patterns represent an advantage for QTA ecotypes for higher Sily extraction under salt stressed conditions.


Assuntos
Silybum marianum/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Ecótipo , Silybum marianum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/fisiologia , Estresse Salino , Solo/química
17.
PLoS One ; 16(7): e0254452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270569

RESUMO

Changing climate, food shortage, water scarcity and rapidly increasing population are some of the emerging challenges globally. Drought stress is the most devastating threat for agricultural productivity. Natural plant growth substances are intensively used to improve the productivity of crop plants grown under stressed and benign environments. The current study evaluated whether leaf extract of different moringa (Moringa oleifera L.) could play a role in improving drought-tolerance of rice (Oryza sativa L.). Rice plants were grown under three drought conditions, i.e., no, moderate and severe drought (100, 75 and 50% field capacity, respectively). Moringa leaf extract (MLE) obtained from four landraces (Multan, Faisalabad, D. G. Khan and exotic landrace from India) was applied during critical crop growth stages, i.e., tillering, panicle initiation and grain filling. Drought stress adversely affected the gas exchange attributes, photosynthetic pigments, antioxidant enzymes' activities, yield and quality parameters of rice. Application of MLE from all landraces significantly improved physiological, biochemical and yield parameters under stressed and normal environmental conditions. The highest improvement in gas exchange traits (photosynthetic rate, stomatal conductance and respiration rate), photosynthetic pigments (chlorophyll a, b and carotenoids) and enzymatic activities (superoxide dismutase, catalase) and oxidative marker (H2O2) was recorded with MLE obtained from Faisalabad landrace. The application of MLE of Faisalabad landrace also improved yield and grain quality of rice grown under drought stress as well as drought-free environment. Thus, MLE of Faisalabad can be successfully used to improve growth, productivity and grain quality of rice under drought stress.


Assuntos
Secas , Oryza , Grão Comestível , Peróxido de Hidrogênio , Moringa
18.
Plant Physiol Biochem ; 166: 53-65, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34090121

RESUMO

The aim of the present work was to evaluate the effect of different plant growth promoters (PGPs) such as ascorbic acid (500 µM), thiourea (250 µM) and moringa leaf extract (3%) to mitigate salinity stress (120 mM NaCl) in four different milk thistle [Silybum marianum (L.) Gaertn.] ecotypes from Faisalabad (FSD), Gujranwala (GUJ), Kallar Kahar (KK), and Quetta (QTA) under field conditions for two years (2017-2018). In the present study, oxidative stress indicators such as malondialdehyde (MDA) and hydrogen peroxide (H2O2) and activities of different antioxidant enzymes and levels of non-enzymatic antioxidants were significantly differed among ecotypes, salinity, and PGPs. Supplementation with ascorbic acid and moringa leaf extract improved antioxidant defense machinery during the acclimation process against salinity, and milk thistle ecotypes represent their background of ecological zones and inherent tendency to face and confronting stress with improving antioxidant levels to a significant extent in varying ways. Ecotypic variations showed that QTA ecotype Followed by FSD, GUJ, and KK had more antioxidant capacity, with minimum reactive oxygen species production. Interestingly, the correlation data revealed that MDA and H2O2 had a positive correlation with each other and showed a negative correlation with all the enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes , Salinidade , Suplementos Nutricionais , Ecótipo , Peróxido de Hidrogênio , Silybum marianum , Estresse Oxidativo
19.
Plants (Basel) ; 10(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921328

RESUMO

Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; however, the application of SWE under salinity for camelina crop has not been documented so far. This study evaluated the potential role of seed priming with SWE in improving salt stress tolerance in camelina. Primed (with 5% SWE and distilled water-hydropriming) and nonprimed seeds were sown under control (no salt) and salt stress (10 dS m-1) conditions. Salinity reduced camelina's emergence and growth, while seed priming with SWE improved growth under control and stress conditions. Under salt stress, seed priming with SWE enhanced emergence percentage (96.98%), increased root length (82%), shoot length (32%), root dry weight (75%), shoot dry weight (33%), α-amylase activity (66.43%), chlorophyll content (60-92%), antioxidant enzymes activity (38-171%) and shoot K+ ion (60%) compared with nontreated plants. Similarly, under stress conditions, hydrogen peroxide, malondialdehyde (MDA) content, and shoot Na+ ion were reduced by 60, 31, and 40% by seed priming with SWE, respectively, over the nonprimed seeds. Therefore, seed priming with SWE may be used to enhance the tolerance against salt stress in camelina.

20.
Physiol Plant ; 173(1): 201-222, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33547807

RESUMO

Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe-contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe-contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Plantas , Rizosfera , Solo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA